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Abstract
To figure out which factor contributes more on carbon emissions caused by energy consumption, this research took multisector
analysis based on the Log-Mean Divisia Index Method (LMDI) and decoupling theory to assess the driving factors of carbon
dioxide (CO2) emissions in China’s six sectors from 2003 to 2016. Our empirical results reveal that China’s economy can be
divided as three decoupling stages and exhibited a distinct tendency toward strong decoupling with a turning point in 2008. Thus,
we discuss the impact of 2008 economic crisis on carbon emissions based on decomposition results. The empirical results of our
study show the following five conclusions. (1) Most sectors in China are in weak decoupling state due to the inhibition of energy
intensity on carbon emissions. (2) Different factors contribute differently to reducing emissions in different sectors, economic
output has the most prominent effect, followed by energy intensity and population scale. (3) China’s current carbon emission
reduction measures benefit more on energy efficiency. (4) The economic crisis has greatly reduced energy efficiency and has no
significant impact on other factors. (5) If all industries adjust their energy mix, carbon emissions in China can be reduced by
almost 17% every year.
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Introduction

In 2017, fossil fuel consumption increased in the world, account-
ing for more than 70% of global energy demand. The atmospher-
ic concentrations of carbon dioxide, methane, and nitrous oxide
are currently at their highest levels, and the ocean is warmer and
more acidic than any time in human history. On 12 December
2015, nearly 200 states attended the United Nations framework
convention on climate change and adopted the Paris agreement
on climate change, China proposed its own targets for action:
Reaching peak carbon emissions by around 2030 and we will

strive to peak as soon as possible; Carbon intensity per unit of
GDP will be reduced by 60 to 65% compared with 2005.The
proportion of non-fossil energy in primary energy consumption
reached about 20%, and the forest stock increased by about 4.5
billion m3 over 2005. As a major developing country, China has
made a solemn commitment to the international community on
tackling global climate change. Considering our own national
conditions, development stage, and the sustainable development
strategy, on 19 December 2017, the national development and
reform commission held a teleconference to announce the official
launch of the national carbon market, which marks that China
has entered a new stage of controlling and reducing carbon emis-
sion through market mechanism and economic means (Dong
et al. 2019a, b, c). Do China’s carbon dioxide emissions have
been effectively controlled? Is economic development no longer
at the cost of environmental pollution? To deal with those ques-
tions, this paper studies whether the economic development has
decoupled from environmental pollution and identifies which
factors may have the largest influence.

There exist an equilibrium and long-term relationship be-
tween economic growth and carbon dioxide emissions (Pan
and Xiong 2018). When we have deep study in the relation-
ship between the two prominent factors—economic growth
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and environmental pollution, Kuznets curve hypothesis (Al-
Mulali et al. 2016), data envelopment analysis (Vlontzos et al.
2014), and input-output model (Pan and Pan 2018;Wang et al.
2015, 2017; Wen and Zhang 2020) are common methods.
Since heterogeneity exists in panel data, the conclusions of
Kuznets curve hypothesis are usually controversial. Scholars
also use vector autoregressive model (VAR) to study the rela-
tionship (Wang and Zhuang 2013; Zhang 2017).

Organization for economic cooperation and develop-
ment (OECD) proposed the decoupling theory which is
used to evaluate whether economic development no lon-
ger depends on environmental pollution. The theory has
widely been used in decoupling relationship between car-
bon emission and economic growth at the level of
provinces(Sun 2011; Zhao et al. 2016), industries (Wang
et al. 2017; Luo et al. 2017), or region (Zhong et al.
2012; Ma et al. 2018a, b). Few scholars apply this theory
to other fields like thermoelectric (Zhang et al. 2018). It
can also be used in the research of energy consumption
and economic growth. Ning et al. (2017) consider the
d i f f e r ence o f economic deve l opmen t , ene rgy
consumption, and carbon dioxide emission from
regional aspect. Wu et al. (2018) use Impact-GDP-
Technology decoupling model and compare the
difference in developed and developing countries. Meng
et al. (2018) employ the Tapio Decoupling Index to de-
compose China’s industrial output and fossil energy
consumption. Moreau and Vuille (2018) decouple energy
using and economic development to verify relationship
between economy and environment.

Knowing whether economic development is decoupled
from environment, we need to decompose the driving
factors. There are many factorization methods, including
index decomposition analysis (IDA), structural decompo-
sition analysis (SDA) (Dong et al. 2018a, b), etc. Since
SDA can consider both direct and indirect energy con-
sumption, and it is often supported by Input–Output ta-
bles (Cansino et al. 2016), in this paper, we choose Log-
Mean Divisia Index (LMDI) to decompose carbon emis-
sion since we ignore the detail input or output factors and
we calculate carbon emission from the aspect of energy
consumption. Ang and Liu (2001) firstly present LMDI
decomposition method and give two case studies about
energy-related CO2 emissions. After developing for
years, LMDI method becomes more mature. Usually, we
decompose carbon emission into five effect—energy mix,
energy intensity, industry structure, economic output, and
population scale effects. But, it usually is not limited by
this (Cansino et al. 2015; Liu et al. 2007). Sometimes
economic activity, industrial structural shift, and final fu-
el shift are also considered.

Since there are so many factors, which one has the most
significant effect? Results are not usually the same. Xu et al.

(2014) hold that the first three driving factors of carbon emis-
sions is economic output effect, population scale, and energy
mix effects. Cansino et al. (2015) find that only population
drive carbon emission while others are fluctuating, sometimes
negative and sometimes positive. Lin and Long (2016) find
that in the chemical industry, output per worker, industrial
economic scale, energy intensity, and energy mix influence
carbon emissions most. Yasmeen et al. (2020) find that in
Pakistan, the economic development factor is the main driving
force for the increase of per capita carbon emissions in the
country and the energy structure and energy efficiency are
the restraining factor for per capita carbon emissions.

Why do scholars have different conclusions when using
LMDI? We think that it could be caused by that those scholars
put all parts together (Zhang et al. 2016) or just discuss one sector
(Wang et al. 2015) or one province (Chong et al. 2017). To
confirm our assumption, we read more articles that discuss one
sector or one region separately. Xu et al. (2012) hold that in
Chinese cement industry, the growth of cement output playsmost
part in driving energy consumption up. Ren et al. (2014) adopt
the LMDI method and suggest that the increase in economic
output contributes more on the increase of CO2 emissions in
China’s manufacturing industry. Minda et al. (2018) apply an
extended LMDI model to study the role of different impact fac-
tors that affect the public building energy consumption.

Separately discussing one sector can have more clear re-
sults, so we consider each independent sector and combine
two methods mentioned above—decoupling theory and
LMDI method. Wen and Zhang (2019) used the LMDI de-
compose model to take into account carbon emissions in each
energy industry and used the Tapio decoupling model from
2000 to 2015 to seek the decoupling states. There exists some
similar study (Wang et al. 2017; Yang et al. 2018; Román et al.
2018); they combine the two methods to carry out a detailed
research on environment pollution.

From discussions above, we find two deficiencies in most
studies of decoupling theory and LMDI. (1) Most studies con-
sider carbon emissions in one region and there are currently
few comparing studies in different sectors. (2) No amount has
been given to clarify the volume of carbon emissions that
China could reduce. To supplement those omissions, this pa-
per makes four main contributions. (1) We calculate the car-
bon emissions produced by six economic sectors. (2) With
regard to sub-sector decomposition, we study the relationship
between economic development and carbon emissions in dif-
ferent sectors and figure out the different effect of different
driving factors. (3) Based on these results, we explore the
impact of the 2008 economic crisis on China’s carbon emis-
sions. (4) Using Japan as an energy mix target, we gain a
specific carbon emission amount China can reduce. Figure 1
is the flow chart. We made literature review before, then we
are going to introduce data and model, followed by results and
comparison, and the last is conclusion.

23551Environ Sci Pollut Res  (2020) 27:23550–23564



Model and database

Decoupling theory and model

In 2002, the OECD (2002) developed the concept of
decoupling into an index to define the relationship between
economic growth and environmental change, so as to explore
how to reduce the correlation between economic growth and
environmental pollution (Dong et al. 2019a, b, c). Decoupling
theory gradually achieved global recognition as a significant
role of successful economy–environment integration. There
are different decoupling states presented by Tapio (2005).
This article studies carbon emissions and economic growth
in China’s different sectors, and the formula is as follows:

e ¼ ΔC=Cð Þ= ΔY=Yð Þ ð1Þ
where e is the decoupling elasticity coefficient, △C is the car-
bon emission increment,C is the carbon emissions in the year,
ΔY is the gross domestic product (GDP) increment, and Y is
the GDP in the year. As the rate of change of carbon emissions
and economic growth is different, there should be different
values of the decoupling elastic coefficient and different types
of decoupling state; these are shown in Table 1 (Li et al. 2016).

Logarithmic Mean Divisia Index method

Based on the Divisia decomposition method proposed by
Divisia (1925), Liu and Ang (2001) proposed the LMDImeth-
od. This method overcomes the problem that Divisia decom-
position failed to pass the statistical test and the new one has
no residual item; it was widely accepted. Later, Ang (2004)
gave a solution dealing with zero and negative values, solving

the only defect in the LMDI processing; the improved LMDI
decomposition method has become a relatively mature index
decomposition method. The method system is becomingmore
and more perfect (Ang 2015). This paper establishes a factor
decomposition model to study the energy consumption carbon
emissions of various industries in China. Formulas are as fol-
lows:
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where Cj is the total carbon emissions in sector j (j = 1, 2, ..., 6,
representing 6 different sectors), Cij is the carbon emissions
generated by the consumption of i energy in the j sector (i = 1,
2, ..., 8, representing 8 different energy), Ct and C0 are the
amount of carbon emission in year t and the beginning year.
Eij is the consumption of i energy in the j department

Conclusion

Results and comparison

Decoupling

results
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(equivalent to the standard coal equivalent), Ej is the total
amount of energy consumed in the j sector (equivalent to the
standard coal equivalent), Yj indicates the output of sector j in
the current year and is calculated as GDP. Pj indicates the
number of employees in the j department that year. fi indicates
the intensity of carbon emissions (carbon emission coeffi-
cient), si represents the energy consumption structure (energy
mix (energy structure (ES0), mi represents energy intensity
(EI) (also can be seen as energy efficiency (Choi et al.
2017)), gi represents the GDP per capital (economic output
per capital (EO)), and pi represents the size of working people
in this sector (population scale (PS)). △Cf, △Cs, △Cm, △Cg, and
△Cp represent the effects of carbon emission changes due to
the above five factors, respectively. Since the carbon intensity
effect is essentially the carbon emission factor of i energy, the
change in carbon emissions caused by the carbon intensity
effect is zero, so we do not consider the carbon emissions
caused by carbon intensity in the calculation, that is:

ΔC f ¼ ∑
8

i¼1

Ct
i−C

0
i

lnCt
i−lnC

0
i

� ln
f ti
f 0i

¼ 0 ð9Þ

By combining the two methods of LMDI and decoupling
theory, we can first find out the linkage between China’s eco-
nomic development and carbon emissions, and then, accord-
ing to the LMDI decomposition method, reasonably control
carbon emissions by adjusting the decomposed factors with-
out affecting economic development (Dong et al. 2019a, b, c).

Database

According to the current China’s State Statistics Bureau’s in-
dustry classification standards, we refer to Ning et al. (2017)
and divide China’s industries into six sectors, shown in
Table 2 (Chai et al 2012). Based on research demand and
statistical caliber, scholars divide all Chinese sectors into dif-
ferent categories, some 39 sectors (Dong et al. 2018a, b), or 30
sectors (Deng et al. 2018), some 4 big sectors (Yu et al. 2018).
For research convenience and data acquisition, we simplified
the division.

At the same time, this paper lists eight types of energy: coal
(104 tons), coke (104 tons), crude oil (104 tons), gasoline
(104 tons), kerosene (104 tons), diesel (104 tons), fuel oil
(104 tons), and natural gas (108 cum). Due to the integrity of
the data, some irreplaceable data-like employment data in dif-
ferent sectors is missing before 2003, our research period is
from 2003 to 2016. Our GDP figures have been deflated,
taking 2003 as the base year. We refer to Shao et al. (2016),
Zhao et al. (2009), and Porter et al. (2017), adopt
Intergovernmental Panel on Climate Change (IPCC) Carbon
Emission Calculation Guideline for data selection and carbon
emission accounting method selection (IPCC). Data comes
from China Statistics Yearbook. Carbon emission coefficients
are shown in Table 3.

Here, we need to do some comparison about Provincial
Guidelines for National Greenhouse Gas Inventories that is
published by the National Development and Reform
Commission and IPCC list. The 2006 IPCC Guidelines for
National Greenhouse Gas Inventories are based on the previ-
ous revisions in1996, incorporating new energy and new gas-
es, and updating previously published methods based on ad-
vances in scientific and technical knowledge. The new guide-
lines can assist countries in developing a complete national
greenhouse gas inventory. Moreover, all countries, regardless
of their experience or resources, are able to make reliable
estimates of emissions and removals of these gases in accor-
dance with the new guidelines. The new guide provides all
departments with the required default values for each param-
eter and emission factor, so the easiest way is to provide only a

Table 2 Sectors dividing

Sector Sector component

Sector 1 Agriculture and forestry, animal husbandry, and fishery

Sector 2 Industry

Sector 3 Construction

Sector 4 Transportation, warehousing, and postal services

Sector 5 Wholesale, retail, accommodations, catering

Sector 6 Other sectors

Table 1 Decoupling elasticity
coefficient and its type ΔY/Y > 0 ΔY/Y < 0

ΔC/C > 0

e > 1.2 Expansive negative decoupling e < 0 Strong negative decoupling
0 ≤ e < 0.8 Weak decoupling

0.8 ≤ e ≤ 1.2 Expansive coupling

ΔC/C < 0

e < 0 Strong decoupling 0 ≤ e < 0.8 Weak negative decoupling

e > 1.2 Recessive decoupling

0.8 ≤ e ≤ 1.2 Recessive coupling
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country’s own activity data. This approach maintains compat-
ibility, comparability, and consistency across countries, and
the final estimate is neither higher nor lower than the actual
estimate, which can minimize uncertainty.

According to the requirements of the United Nations
Framework Convention on Climate Change, all Parties should
prepare national greenhouse gas inventories in accordance
with the IPCC Guidelines for National Greenhouse Gas
Inventories. Provincial Greenhouse Gas (GHG) inventory
preparation in China generally follows the basic approach of
the IPCC Guidelines for National Greenhouse Gas
Inventories, and draws on the good practices of GHG inven-
tory preparation for energy activities in China in 1994 and
2005.When people calculate carbon emission in China, they
can use carbon emission coefficient or method provided by
both IPCC list and Provincial GHG inventory. (Information
above comes from IPCC and National Development and
Reform Commission).

Decoupling results analyze

Generally, it can be seen from Table 4 that the situation in all
sectors are slowly getting better and we divide different results
into three situations. First is stable state—sectors 3, 4 and 6.
Sector 3 is nearly in weak decoupling state while sectors 4 and
6 are in expansive coupling. Second is semi-stable state—
sectors 2 and 5. Sector 2 is in expansive coupling state in early
times and then in weak decoupling state and last in strong
decoupling state. Instead, sector 5 is in weak decoupling state
first and then in expansive coupling state. The last one is
unstable state—sector 1. Sector 1 is in a cycle of weak
decoupling–expensive decoupling–weak decoupling with
higher frequency, with a big energy consumption fluctuation
during the research period. Also, we can divide China’s econ-
omy decoupling state into three stages, with a turning point in
2008. The first stage occurred during the years from 2004 to
2008; during this period, China was in either weak decoupling
state or expansive coupling state. Weak decoupling state
means that carbon emission decreases and GDP increase
slightly while expansive coupling means that energy con-
sumption increases and GDP increases too. The second stage
was from 2008 to 2009, with a turning point caused by the

economic crisis. The third stage was from 2009 to 2016 and
included a distinct tendency toward weak to strong
decoupling.

The year 2009was unusual; most sectors were in expansive
negative decoupling state. In other words, output released
more carbon dioxide in that year for some reason like energy
waste. We believe that Chinese economy hit bottom in 2009
because the financial crisis in 2008. However, due to the im-
pact of the crisis, the domestic economic situation became
unstable, resulting in excessive energy consumption.
Another unusual year was 2014, China’s overall economy
entered strong decoupling state due to the strong decoupling
of industrial carbon emissions, which led directly to the
decoupling of the overall economy. This point is in line with
the fact that China has had negative energy consumption
growth during 2015, showing that under the current new nor-
mal economic development, our effort in environment protec-
tion makes sense; there is no obvious correlation between
economic growth and energy consumption.

We can also see that there is high similarity between the
decoupling of industry and the decoupling of the overall econ-
omy. They have almost the same decoupling state. The strong
decoupling of industry leads directly to the decoupling of the
overall economy of industry, indicating that (1) industry does
account for most of China’s energy consumption and (2) our
carbon emission reduction policy should call on industry to
rectify their emission policies. From 2011 to 2015, the
“Twelfth Five-Year Plan” period, our overall situation was
better than it was during the “Eleventh Five-Year Plan” period,
mainly due to industrial decoupling. This indicates that the
emission reduction policy makes sense in national emission
reduction. For example, the carbon trading system launched in
2011 covers electricity generation, steel production, and ce-
ment manufacturing in seven provinces and cities and has
performed well in suppressing industry carbon emissions.
Prior to this measure, relation between Chinese economic
growth and energy consumption was weak decoupling state.
During the Eleventh Five-Year and Twelfth Five-Year Plan
periods, China adopted a variety of energy-saving and
emission-reduction measures, significantly slowing the ener-
gy consumption growth. The decoupling state of economic
growth and energy consumption means that the dependence
of economic growth on energy consumption has gradually

Table 3 Carbon emission coefficient of various energy sources

Energy Carbon emission coefficient Energy Carbon emission coefficient

Coal 0.7559 Kerosene 0.5714

Coke 0.8550 Diesel 0.5921

Crude oil 0.5857 Fuel oil 0.6185

Gasoline 0.5538 Natural gas 0.4483

Note: Carbon emission = energy consumption volume (equivalent to the standard coal equivalent) × carbon emission coefficient
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declined. Although China’s economic growth and energy con-
sumption have not yet achieved strong decoupling, an essen-
tial contribution to economic growth has undergone signifi-
cant structural changes. The contribution rate of technological
progress is continuously rising, and the proportion of low-
energy-consuming services in China’s GDP is increasing. It
is precisely because of the weak decoupling between econom-
ic growth and carbon emission that China has ability to prom-
ise that greenhouse gas emissions will peak before 2030 or
even earlier. Going forward, China can contribute more to
reducing global climate risks.

Multisector LMDI decomposition of carbon
emission

Through LMDI decomposition and Eqs. (2)–(8), we can sep-
arately decompose the carbon emission of six sectors and
study the effects of energy mix, energy intensity, economic
output per capita, and population on energy consumption car-
bon emissions. For comparability, all calculation results are
shown in increments. The contributions of the four drivers
are represented by bar graphs, and changes in carbon emission
increments are represented by line charts. The data in the
figure below indicates that how much a certain factor add
the increment of carbon emissions. The positive and negative
values represent respectively the promoting and suppressive
effects on increment of energy consumption carbon
emissions.

Agriculture, forestry, animal husbandry, and fishery
sector

It can be seen from Fig. 2 that the energy mix effect on carbon
emission is not obvious. Usually, it promotes carbon emission
a little, but in 2009 and 2013, it suppresses a lot. The energy
intensity effect has been suppressive for long; we can say that
the energy efficiency of sector 1 is higher, so it has a signifi-
cant suppressive effect on carbon emissions. The economic
output per capita has always been a catalyst for carbon emis-
sions. Especially after 2013, while the number of employed
people in agriculture has been declining year by year, the
economic output per capita has still played a catalytic role.
The population size effect has always suppressed agricultural
carbon emissions. Since 2013, the number of employed peo-
ple has shown a downward trend, causing the inhibition of the
population-scale effect to be more pronounced. During the
study period, whether the number of people employed in sec-
tor 1 increased or not, the population scale still suppressed
carbon emissions. Considering only carbon emissions, we
may posit that China’s employment population in sector 1
has large space for growth.

From 2003 to 2016, only the economic output per capita
contributed to promoting carbon emissions. Under the circum-
stances that the energy mix, energy intensity, and population
scale all inhibit carbon emissions, we find that carbon emis-
sions from sector 1 are increasing year-on-year, indicating that
economic output per capita has dominant impact on agricul-
tural carbon emissions.

Industry sector

It can be seen from Fig. 3 that the energy structural effect plays
uncertain but small role in promoting carbon emissions, some-
times it promotes carbon emissionwhen consuming more coal
while sometimes not when consuming less coal. Sector 2 has
special requirements for raw materials and somewhat fixed
demand for energy types. Figure 4 shows that sector 2 has
the highest consumption of coal, crude oil, and coke with an
unbalanced energy mix. We calculated the makeup of the cu-
mulative industrial energy consumption from 2003 to 2016,
and coal accounted for 68.52%, crude oil accounted for
18.19%, and coke accounted for 10.65%. The remaining en-
ergy accounted for only 2.64%. It can be said that this struc-
ture is in long-term fixed state. On the other hand, from
Table 3, we can see that coal, coke, and crude oil occupy the
first three places in the energy carbon emission coefficient. It
is obvious that sector 2 will generate more carbon emissions
when it consumes same amount of standard coal equivalent.

Energy intensity has long-term suppressive effect on car-
bon emissions, indicating that China’s industrial energy usage
efficiency is relatively high. Only in 2008 was the effect of the
energy intensity effect reversed—in that year, this factor pro-
moted carbon emissions. In 2008, affected by the global eco-
nomic crisis, economic output fell sharply. The positive mar-
ket atmosphere of previous years led to optimistic overestima-
tion. The economic crisis caused a series of problems—such
as capital chain breakage, factory bankruptcies, and so on,
which led to poor efficiency in industrial energy usage.
Carbon emission intensity rate rose in 2009.

Most time, the economic output effect make largest contri-
bution on promoting carbon emissions, this is in line with Lin
and Long’s (2016) findings in the chemical industry.
However, in 2012–2013, the economic output effect sup-
pressed carbon emissions. According to our analysis, there
only exist 2 years when China’s industrial output per capita
decreased, in 2011 it decreased by 0.625% and in 2013 by
10.43%. Does this indicate the decrease in economic output
per capita does not necessarily suppress carbon emissions un-
til it reaches a limited value?

Since 2014, industrial carbon emissions have been in a
downward trend, with only the economic output contributing
to carbon emissions, while the other three are in concert with
suppressing carbon emissions. In 2013, carbon emissions
reached a peak of 3009.23·104 tons, but in 2014 fell to
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2989.05·104 tons, and in 2016, it continues to drop down to
2867.06·104 tons. An important reason for this decline is that
population size has inhibited the growth of carbon emissions
in recent years, while energy intensity contributes a lot in
curbing it.

What is more, since 2014, the increase in industrial carbon
emissions has been negative, indicating that China’s industrial
carbon emission reduction strategy has achieved good results.
However, this effect does not come from adjustment in energy
mix and energy intensity but the suppression of population-
scale effects. The effect of the energy mix effect on the in-
crease in carbon emissions in the past 2 years is still unstable.
It may be because that the adjustment of the energy mix strat-
egies is still in adaptive period. The industrial energy mix is
fixed for so long that the mitigation strategy has not been
integrated with the industrial production process. But there
are some improvements in the energy mix of industry.

Figure 4 shows that since 2014, the amount of coal used for
industrial energy consumption in China has begun to de-
crease, which has significant negative impact on overall in-
dustrial carbon emissions.

Construction sector

Figure 5 shows that the effect of the energy mixes on carbon
emissions is relatively weak and generally has deterrent effect.
Like sector 2, energy consumption structure of sector 3 is also
somewhat fixed. In accumulated amount of energy consump-
tion from 2003 to 2016, sector 3 mainly consumes diesel, coal,
and gasoline and accounted for 41.1, 31.3, and 23.2%, respec-
tively. The remaining energy only accounted for 4.4%. The
carbon emission coefficient of the three main energy is rela-
tively low, especially the diesel, of 0.5921, and the construc-
tion sector consumes less coal. Compared with sector 2, sector

Fig. 3 Decomposition of carbon
emissions in industry sector

Fig. 2 Decomposition of carbon
emissions in agriculture, forestry,
animal husbandry, and fishery
sector
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3 had less carbon emissions, and energy mix had negative
effect on carbon emissions. Only the years from 2008 to
2009 showed bigger positive promotion.

Energy intensity inhibits carbon emission in the long term
and sometimes has such small positive effect that we can omit
it. So, we can say that energy intensity has long-term suppres-
sive effect on construction carbon emissions, and sector 3 has
higher energy usage efficiency.

Economic output plays major role in promoting carbon
emissions, followed by population-scale effects. The econom-
ic output effect only appeared to be suppressive during the
year 2010–2013, as economic output per capita continued to
decline from 2011 to 2013, decreasing 19.34, 5.81, and
24.55%, respectively. On the one hand, during 2011 to 2013,
the construction sector had an annually GDP growth rate of
9.7%. On the other hand, from 2011 to 2013, employment in
the construction sector in China increased sharply. The effect

of population size on carbon emissions has become particu-
larly apparent. Both GDP and the size of the working popula-
tion have played a role in economic output per capita, leading
to a situation in which economic production per capita sup-
pressed carbon emissions. However, the population-scale ef-
fect began to suppress carbon emissions after 2013. Because
the number of people employed in the construction industry
became flat in 2014 as compared with 2013 and declined in
2015 and 2016. This may help explain why the effect of eco-
nomic output per capita began to promote carbon emissions
after 2013. Overall, in the sector 3, the number of employed
people has decreased, but economic output has maintained a
positive growing trend. In addition, we believe that the in-
crease in the number of employed people does not mean that
the population scale has catalytic effect on carbon emissions.
Only when population reaches a limit value will the
population-scale effect promote carbon emission. This

Fig. 5 Decomposition of carbon
emissions in construction sector

Fig. 4 Industrial energy
consumption
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situation is understandable due to the gradual maturity of sec-
tor 3, even though the increase in the population size means
more inputs and outputs and suggests that the suppression of
carbon emissions by technological progress can effectively
counteract the promotion of the population scale effect.

Transportation, warehousing, and postal sector

The energy mix effect suppresses carbon emissions for a long
period of time in sector 4, and energy consumption stay in fixed
energy mix consisting mainly of diesel and gasoline. The two
types of energy have lower carbon emission coefficients and low-
er carbon emissions. The energy intensity effect inhibits carbon
emissions, meaning that energy efficiency is high. The effect of
economic output per capita, along with the population size effect,
has been a promoting factor in the long term. Larger inputs and
larger outputs have promoted the increase of carbon emissions.

However, around 2013, due to the large increase in the
employed population and the small increase in GDP in
2013, the per capita output decreased, and this has inhibited
carbon emissions. The population size effect promotes carbon
emissions over a long period of time, because sector 4 requires
a lot of manpower input. At the same time, a large amount of
output occurs, and expected output and unexpected output
increase substantially as well. The number of employees in-
creased from 2003 to 2016 year by year, and dramatically
increased in 2013, when online shopping was widely
popularized.

From Fig. 6, we can see that the carbon emissions of sector
4 were greatly affected by the economic output per capita
effect, and the ΔC trend is almost in line with economic out-
put per capita. Carbon emissions have been increasing for
years. Only in 2008, affected by the economic crisis, the

contribution of each effect became weak, resulting in small
increase in carbon emissions for that year.

Wholesale, retail, accommodation, and catering
sector

Figure 7 shows that the sector’s carbon emissions increased,
and in some years, there was a decline due to the significant
suppression of energy intensity during 2003–2016. Unlike
other sectors, although energy mix effects contribute little to
carbon emissions, the promotion and suppression effects were
parallel in sector 5. When coal consumption increased, carbon
emissions were often promoted. Especially from 2008 to
2009, coal consumption increased 143% (12.8·104 tons in
2008 and 31.1·104 tons in 2009). This situation has also hap-
pened in the sector 3, we can conclude that coal consumption
can directly affect the energy mix of the sector, and thus affect
the direction of the role of energy mix on carbon emissions.

Energy intensity has higher suppressive effect on carbon
emissions for a long time, since the sector has achieved higher
energy efficiency. Only in the 2008 economic crisis did energy
efficiency decrease, which caused energy intensity to promote
11.7·104 tons of carbon emissions.

The economic output per capita has obvious promotion
effect on carbon emissions. During the research period, the
sector had an annual GDP increase rate of 11.3%, while only
2.79% of the employed population. Under this situation, eco-
nomic output per capita increased 8.65% annually. But in
2013, the economic output per capita effect inhibited carbon
emissions and this factor’s economic output per capita de-
creased for the first time to 10.5%, this was mainly caused
by a lower rate of employed population.

Fig. 6 Decomposition of carbon
emissions in transportation,
warehousing, and postal sector
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The inhibition and promotion effects on carbon emission
coexist at the population scale, but we still believe that the
factor promoting carbon emissions is small. For the period
from 2008 to 2013, the rates of employment had significant
effect on emissions. Over the period from 2008 to 2013, em-
ployment population show increasing trend. Reducing indus-
try employment can restrain carbon emissions and will not
affect GDP significantly. Is this a symbol that the employment
in sector 5 has become saturated?

Other sectors

Other sectors include real estate, finance, education, etc. This
sector has more to do with our daily necessities. From Fig. 8,
the overall carbon emissions are in an increasing state, and
only in the past 2 years has there been a downward trend

due to the suppression of energy intensity effects. The impact
of energy mixes on carbon emissions is the same as sector 3.

When coal consumption doubled in 2009, the energy mix
effect drastically stimulated carbon emissions. The energy in-
tensity has suppression impact on carbon emissions for a long
time. Particularly in the past 2 years, the suppressive effect has
become more prominent, while in 2008 alone, it promoted
4.2·104 tons of carbon emissions, indicating that the economic
crisis has large impact on China’s industry. The economic
output per capita effect has the largest and most stable impact
on promoting carbon emissions. The highest contribution was
in 2006 with 5.25·104 tons and the lowest was in 2013 with
1.64·104 tons. The population-scale effect promotes carbon
emissions and becomes stronger as time goes by.

In 2008, four factors promoted carbon emissions at the
same time, causing an increase of 14.7·104 tons of carbon
emissions—mainly resulting from the increase of energy

Fig. 7 Decomposition of carbon
emissions in wholesale, retail,
accommodation, and catering
sector

Fig. 8 Decomposition of carbon
emissions in other sectors
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intensity. This illustrates that an economic crisis impacts en-
ergy intensity more than energy mix.

Summaries

From analysis above, we can see four effects of the influence
of energy carbon emissions in various sectors in Table 5 and
Fig. 9. Figure 9 shows that China’s energy consumption car-
bon emissions have not declined until 2014. There are two
main reasons for this. First, in 2014, the population-scale ef-
fect began to curb carbon emissions. Then, the suppressive
role of the energy intensity also increased year by year, mainly
due to the suppression of carbon emissions caused by the
industrial energy mix. The energy mix has large but unclearly
contribution to the emissions. This shows that China’s carbon
emission reduction measures recently are conducive to im-
proving energy efficiency, but have not reached the level of
changing energy mix.

We posit the following conclusions. (1) The energy mix of
various sectors is so stable and unchanged that its contribution
to each sector is not significant. The energy mix effect re-
strains the carbon emissions of each sector but promotes car-
bon emissions in sector 2, because sector 2 uses too much
coal. (2) The energy intensity effect inhibits the carbon emis-
sions of various sectors. In other sectors, the energy intensity
effect promotes carbon emissions, indicating that other sectors
have lower energy efficiency. (3) The economic output effect
is the main driving force for carbon emissions and contributes
greatly to adding carbon emissions in various sectors. We can
say that China’s economic growth is still occurring at the cost
of environmental pollution. (4) The population scale effect is
promoting carbon emissions in various sectors also plays a
significant role, especially for industrial and construction sec-
tors, second only to the pulling effect of economic output
effects. However, in sector 1, the number of people employed
has been relatively low, so the population scale effect inhibits
industrial carbon emissions.

Table 5 Comparison of decomposition results of energy consumption

Industry Energy mix Energy intensity Economic output Population scale

Uncertain 1 – 2 + 4 + 3

Construction – 1 – 2 + 4 + 3

Agriculture, forestry, animal husbandry, and fishery – 1 – 3 + 4 – 2

Transportation, warehousing, and postal services – 1 – 3 + 4 + 2

Wholesale, retail, accommodation, and catering – 1 – 3 + 4 + 2

Other sectors – 1 + 3 + 4 + 2

Overall sector Uncertain 1 – 3 + 4 + 2

Note: The sign indicates the promotion or inhibition effect of the factor, and uncertain means the influence is not clear, sometimes positive and sometimes
negative. The number represents the degree of contribution, 4 is the largest and 1 is the smallest

Fig. 9 Decomposition of carbon
emissions in the whole sector

23561Environ Sci Pollut Res  (2020) 27:23550–23564



We need to address the impact of energy intensity on var-
ious sectors during the economic crisis of 2008. During the
economic crisis in 2008, there was serious impact between the
United States and some Asian countries and regions such as
China and Hong Kong, and the time of the crisis lasted for a
long time (Ye et al. 2016). After 2008, China’s GDP growth
rate did not continue its rapid growth (Mi et al. 2017). From
2008 to 2009, China’s GDP growth rate was 9%, while the
country’s total energy consumption increased by 44.74% (cal-
culated according to method in “Database,”which is 3169.12·
104 tons in 2008 and 4587·104 tons in 2009), and the energy
intensity increased by 32.26%. In 2009, the carbon emission
reaches a peak of 3362.17·104 tons and an increment in carbon
emissions of 986.17·104 tons. Among the increment, energy
intensity promotes 834.8·104 tons (of which 795.8·104 tons
were due to the industrial energy intensity effect). In 2008,
the suppression of energy intensity was turned into the pro-
motion of energy intensity. We have full reason to believe that
the economic crisis greatly reduced energy efficiency. This
can also explain the negative decoupling phenomenon in the
industrial sector in 2008.

Energy mix optimization

To have a clear understanding of how much Chinese carbon
emissions can be reduced, we begin to optimize Chinese en-
ergy mix, and aim at Japan. Results are shown in Fig. 10.
Japan has more mature experience in environmental gover-
nance. Figure 10 shows that Japan performs better than
China in energy intensity (energy consumption per unit of
gross domestic product. The less, the better. Data comes from
theWorld Bank). Japan’s figures are from 5.03 in 1990 to 3.74
in 2015 while China was at 21.18 in 1990 to 6.69 in 2015.
Chang et al. (2018) conducted a comparative study in the two
countries based on LMDI results and found that China
achieved only relative decoupling and while Japan successful-
ly continued the real decoupling state of economic growth
from air-pollutant emissions. We therefore believe it is advis-
able to aim at Japan and optimize our energy mixes to reduce
carbon emissions.

In 1973, fossil energy accounted for 94% of Japan’s total
energy, and it slightly decreased to 89% in 2016 (data comes
from the Web page) (SOHU 2018). However, China’s energy
mix has undergone major changes. In 1973, 16.9% was coal,
75.5% was petroleum, and in 2016, only 39% was oil, while
25% was coal and 24.7% was gas. This means that coal
accounted for almost 28% (25/89) of fossil energy, 28%
(24.7/89) of gas, and 44% (39/89) of oil. Note that oil here
includes oil, petrol and so on. We consider the three ratios in
comparison with the optimal Chinese energy mix, and results
are revealed in Fig. 11.

Figure 11 suggest that by adjusting the energy mix while
maintaining the same total energy consumption, carbon emis-
sions can be significantly reduced. Real carbon emissions and
adjusted carbon emissions show the same trends, with signif-
icant difference—almost 0.5 billion kg CO2 per year. This
means that by adjusting the energy mix, we can reduce ap-
proximately of 17% carbon emissions every year.

Conclusion

Combining the decoupling status of various sectors and their
carbon emissions, we find that most of the weak decoupling
states achieved in China are due to the inhibition of energy
intensity on carbon emissions, meaning that China has rela-
tively high energy efficiency. The strong decoupling state in
the industrial sector in the past 2 years is mainly due to the
reduction of coal consumption since 2013, which has directly
led to the emergence of an overall strong decoupling phenom-
enon. This article also has some drawbacks. For example,
whether there is more suitable carbon emission accounting
method, the optimization of energy structure must ensure the
production demand and so on. Generally, we have the follow-
ing conclusions:

1. China’s economic growth is still occurring at the cost of
environmental pollution. Economic output per capita
drives China’s carbon emissions a lot, followed by the
suppression of the energy intensity and the promotion of

Fig. 10 Energy intensity in China and Japan
Fig. 11 Carbon emission comparison
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population scale, and the effect of energy mix effects is
not obvious.

2. China’s carbon emission reduction measures in the past
2 years are conducive to improving energy efficiency but
fail to change the energy mix. However, energy mix
changes in the industrial sector are relatively obvious. If
we adjust energy mix based on Japan’s energy mix,
Chinese carbon emission will reduce approximately
17% every year.

3. The economic crisis has greater impact on energy efficien-
cy but influenced other factors little. When facing the
same crisis in the future, to control carbon emissions, we
must pay attention to the rational use of energy and main-
tain or even increase usage efficiency.

4. Industrial carbon emission plays an irreplaceable role in
the overall national emission reduction. Carbon emission
reduction must begin in industry from reducing the usage
of coal to improve energy mix.

According to the 13th Five-Year Plan for the development
of the coal industry published by China National
Development and Reform Commission and National Energy
Administration, China’s industrial coal usage will be con-
trolled at 58% by 2020 (68.52% of the cumulative industrial
energy consumption from 2003 to 2016, as mentioned in the
“Industry sector”). This confirms that our conclusions are con-
ducive to the implementation of green economy, as well as
serves as references for policy formulation. From the above
conclusions, we have the following policy suggestions: first,
different factors have diverse impacts on the 6 sectors and we
cannot generalize them when making policies. For example,
the population size effect significantly inhibits carbon emis-
sions in sector 1 but promotes emissions in several other sec-
tors. Therefore, we should combine the characteristics of var-
ious industries and formulate corresponding measures to re-
duce emissions. Second, when facing the crisis in the future, to
control carbon emissions, wemust pay attention to the rational
use of energy and maintain or even increase usage efficiency.
Finally, energy mix plays an obvious role in increasing
China’s carbon emissions. We should take optimizing energy
structure as the key and take improving other factors as the
principle to gradually reduce China’s carbon emissions.
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